Суперконденсаторы для запуска двигателей - РАДИОСХЕМЫ

     простые интересные РАДИОСХЕМЫ сделанные своими руками

» ДАТАШИТ
Например: TDA2050


» РАДИОБЛОГИ
Как сделать простую подставку под ноутбук
Как переделать напряжение из 12 вольт в 9 и 6 В
Доктор фьюзов для AVR
50 Вт LED фонарь для поиска
Модернизация переговорного устройства домофона
О доработке и ремонте проигрывателей винила
Схема сирены сигнализации с аккумулятором
Самый маленький SMD RGB LED куб



Суперконденсаторы для запуска двигателей

Суперконденсатор, распространившийся в последнее время, не совсем корректное название такого устройства как ионистор. Ионистор в свою очередь является разновидностью конденсатора. Ионистор изобретен довольно давно - в 50-х годах, но в таком виде как сейчас он существует с 1982 года. Первые ионисторы с малым внутренним сопротивлением для применения в мощных схемах были разработаны фирмой PRI в 1982 году.

С появлением ионисторов стало возможным использовать конденсаторы в электрических цепях не только как преобразующий элемент, но и как источник напряжения. Ионистор широко применяются в качестве замены батареек для хранения информации о параметрах изделия при отсутствии внешнего питания. Такие элементы имеют несколько преимуществ над обычными химическими источниками тока — гальваническими элементами и аккумуляторами: 

  • Высокие скорости заряда и разряда.
  • Простота зарядного устройства
  • Малая деградация даже после сотен тысяч циклов заряда/разряда
  • Малый вес по сравнению с электролитическими конденсаторами подобной ёмкости
  • Низкая токсичность материалов
  • Неполярность (хотя на ионисторах и указаны "+" и "-", это делается для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе).

Плотность энергии ионисторов пока еще в несколько раз меньше возможностей аккумуляторов. Например, плотность энергии ионистора BCAP3000 3000Ф x 2.7В массой 0.51 кг составляет 21.4 кДж/кг. Это в 7.6 раз меньше плотности энергии свинцовых электролитических аккумуляторов, в 25 раз меньше литий-полимерных аккумуляторов, но в десятки раз больше плотности энергии электролитического конденсатора. Плотность мощности ионистора зависит от внутреннего сопротивления. В последних моделях ионисторов внутреннее сопротивление достаточно мало, что позволяет получать мощность, сравнимую с аккумуляторной.

В 1997 году исследователи из CSIRO разработали супер-конденсатор, который мог хранить большой заряд за счёт использования плёночных полимеров в качестве диэлектрика. Электроды были изготовлены из углеродных нанотрубок. У обычных конденсаторов удельная энергия составляет 0,5 Вт·ч/кг, а у конденсаторов PET она была в 4 раза больше.

В 2008 году исследователи разработали опытный образец ионистора на основе графеновых электродов, обладающий удельной энергоёмкостью до 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30—40 Вт·ч/кг).

Срок службы ионисторов велик. Проводились исследования по определению максимального числа циклов заряд-разряд. После 100 000 циклов не наблюдалось ухудшения характеристик. Согласно недавним заявлениям сотрудников MIT, ионисторы могут в скором времени заменить обычные аккумуляторы. Кроме того, в 2009 году были проведены испытания аккумулятора на основе ионистора, в котором в пористый материал были введены наночастицы железа. Полученный двойной электрический слой пропускал электроны в два раза быстрее за счет создания туннельного эффекта.

Новая конструкция суперконденсатора, предложенная специалистами из Nanotek Instruments Inc. (США), имеет электроды, состоящие из графена с примесями повышающего проводимость ацетилена и связующего вещества PTFE. В качестве электролита использовалось вещество, известное в электрохимии как EMIMBF4. К слову, именно эта научная группа в 2006 году впервые предположила, что графен в принципе может использоваться для создания подобных устройств. В результате применения указанных веществ ученые создали в защитной камере конденсаторы размерами не больше монеты.

Энергетическая плотность полученного устройства по порядку сравнима с никель-металлогидридными батареями. Если говорить о цифрах, то плотность энергии в созданном устройстве – порядка 85,6 Вт*час/кг при комнатной температуре и порядка 136 Вт*час/кг при 80 градусах по шкале Цельсия. Однако, как было отмечено выше, устройство имеет громадное преимущество по сравнению с привычными батареями, заключающееся в том, что оно может быть заряжено и разряжено чрезвычайно быстро. Сами разработчики считают свое творение настоящим технологическим прорывом. Возможность быстрого заряда означает, что в будущем подобная конструкция может использоваться для питания мобильных телефонов и другой пользовательской портативной техники.

Суперконденсаторы Российского производства

В Национальном исследовательском технологическом университете России МИСиС в сотрудничестве с компанией ТЭЭМП, на основе уникального материала, схожего с графеном и нанотрубками, разработали супер конденсаторы, которые применили в системах для запуска двигателей тяжелой техники при экстремально низких температурах.

Внутри суперконденсатора - наноуглеродный материал из органического волокна с высокой проводимостью тока и повышенной удельной энергоемкостью – до 20 Ф/куб.см активной массы (одно из распространенных в научной среде его названий - "вискерсы") и низкой себестоимостью производства. Новая идеология сборки модулей суперконденсаторов, снижающая трудоёмкость изготовления накопителей, и оригинальная технология получения электродных материалов из органических волокон в перспективе позволяют снизить себестоимость изготовления накопителя энергии почти в 3 раза, - говорят представители компании «ТЭЭМП». Производство новейших российских суперконденсаторов по описанной выше технологии планируется запустить в первом квартале 2017 года в Московская области.

Первая линейка устройств с использованием суперконденсаторов нового типа уже создана. Разработчики акцентируют в ней внимание на системе запуска двигателей, «содержащей внутри гибридный накопитель электроэнергии на основе модуля суперконденсаторов и бензиновый генератор». Она способна работать в автономном режиме, не требует наличия электросети и в заряженном состоянии может 10 раз подряд завести, к примеру, тяжелый самосвал при температурах от -40 °C до -60° C. Система может использоваться для запуска самолетов малой авиации, которые требуют большой мощности в короткий промежуток времени, что быстро выводит обычные аккумуляторы из строя. Такое устройство уже тестировалось осенью 2016 года для запуска военной техники и получило положительные отзывы.

Maestro - 27.01.2017 - Прочитали: 3273

        
Ваши комментарии к материалу
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
» ПОИСК СХЕМ

» РАДИОЭЛЕМЕНТЫ


Группа вконтакте Канал ютуб Группа в фэйсбук Мобильная версия © 2010-2018, "Радиосхемы". Все права защищены. Почта