diy: простые интересные РАДИОСХЕМЫ сделанные своими руками

» ДАТАШИТ
Например: TDA2050


» ТРЕКЕР GPS


» РАДИОБЛОГИ
Индикатор разряда аккумулятора в авто - схема
Улучшение прибора для проверки оптопар
Еще раз о БП из АТХ
История поломки компьютера и метод его ремонта
Указатель напряжения - индикатор
Самостоятельный ремонт экранов телефонов Iphone фирмы Apple
Паяльный фен своими руками. И немного теории.
Адаптер для подключения МК AVR к программатору


Радиосхемы » Теория электроники

ПОЛУПРОВОДНИКОВЫЕ ТРАНЗИСТОРЫ И ДИОДЫ

      

Привет всем читателям "Радиосхем", меня зовут Дима и сегодня я расскажу простыми словами о полупроводниках и их свойствах, а также о транзисторах и диодах. Итак, приступим, для начала вспомните, какие вы элементы электроники встречали? И их принцип работы? Если вы  начали сразу изучать диоды и транзисторы, то у вас возникнет много вопросов. Поэтому лучше начать с закона Ома, а потом приступить к более простым конструкциям. Транзисторы и диоды – не очень простые элементы, обладающие свойством полупроводника.

ПОЛУПРОВОДНИКОВЫЕ ТРАНЗИСТОРЫ И ДИОДЫ

Вы знаете как работает простой проводник - ничего сложного. Электроны с большой скоростью проходят через атом, сталкиваясь с ними. При этом возникает сопротивление, вы уже встречали это слово, конечно встречали. Вот лучший друг сопротивления называется резистор. Резистор – это пассивный элемент, обладающей бОльшим сопротивлением, чем обычный  проводник. Ладно, идём дальше, нам надо узнать что же представляет из себя полупроводник? У полупроводника в атомной связи есть лишние электроны, их называют свободными электронами, и есть дырки. Дырки – это пустые места, в которых должны находиться электроны. На рисунке 1, изображено внутреннее строение межатомных связей полупроводника.

Внутреннее строение межатомных связей полупроводника.

Рисунок 1. Внутреннее строение межатомных связей полупроводника.

Теперь разберёмся - как полупроводник пропускает ток. Представим, что мы подключили полупроводник к гальваническому элементу, например к обычной батарее. Ток начинает  двигаться от плюса к минусу. При тепловых явлениях электроны проходящие через полупроводник начинают выхватывать из межатомных связей электроны. Происходят дырки, а свободные электроны сопровождаются проходящими электронами гальванического элемента. Те же электроны, которые попадут на дырку, как бы впрыгнут в неё, восстановив межатомную связь. Проще говоря в полупроводнике при поступлении на него тока нарушаются межатомные связи, электроны вылетают и становятся свободным, другие заполняют дырки, встретив на их пути. И этот процесс происходит бесконечно. На рисунке 2 показано движение электронов.

Движение и направление электронов и дырок.

Рисунок 2. Движение и направление электронов и дырок.

Полупроводниковые диоды

Итак, мы разобрались что из себя представляет полупроводник и какой у него принцип работы. Теперь приступим к диодам, не самым простейшим радиоэлектронным элементам. Выше уже говорил про p-n переход. Теперь подробней: p - это positive (позитив, положительный), n - negative (негатив, отрицательный). Давайте разберёмся как движутся электроны в диоде. Представим, если мы подключим гальванический элемент, например батареи так, чтоб была полярность. Ах да - мы же не разобрались в полярности. Мы уже знаем структуру диода: p-n переход, p - положительный является анодом, n - отрицательный является катодом. На корпусе диода есть тоненькая белая полоска - она чаще всего является катодом, её присоединяют к минусу, а другой вывод является анодом, который присоединяется к плюсу. Теперь разберёмся с движение электронов. Мы присоединили полярно выводы диода, теперь возникает ток. Электроны положительной области начинают двигаться к минусу батареи, а электроны отрицательной области начинают двигаться к плюсу, они встречаются друг с другом, электроны как бы впрыгивают в дырки, в результате и те и другие прекратили своё существование. Эта электропроводность называется электроно-дырочной электропроводностью, электроны движутся с небольшим сопротивлением, показано на рисунке 3 (А). Этот ток называется прямым током Iпр, а что же будет если поменять полярность так, чтобы анод был соединён с минусом, а катод с плюсом. Что же будет происходить? Положительная область, короче дырки начнут двигаться к минусу батареи, а свободные электроны к плюсу, в результате возникнет большая область, она заштрихована на рисунке 3 (Б). Этот ток называется обратным, обладающим очень большим сопротивлением, превышающим несколько сотен Ом, килоом и даже мегаом.

Итак, разобрались с p-n переходом, давайте теперь поговорим о предназначении диода. Диоды используются для детекторных приёмников, чтобы из переменного тока создавать пульсирующий постоянный. А что такое вообще переменный ток? Давайте вспоминать. Переменный ток - это ток который способен менять своё направление в течении каждого полупериода, единицы времени. Как же диод сможет сделать из переменного тока пульсирующий? А вот как: вы же помните, что диод пропускает ток только в одну сторону.

Движение электронов обратного и прямого тока в диоде

Рисунок 3. Движение электронов обратного и прямого тока в диоде.

Когда ток начинает двигаться от плюса к минусу, проходит прямой ток, спокойно без большого сопротивления, но когда ток начинает двигаться от минуса к плюсу, то возникает обратный ток, который диод не пропускает. Вы наверняка видели график переменного напряжения, такая волнистая линия - сунусоида. Если прикрыть нижнюю линию, то получиться пульсирующий ток. Значит диод как бы отсёк нижнею часть. Ток будет двигаться только в одну сторону - это от плюса к минусу. Разобрались? Тогда теперь приступим к транзисторам.

Биополярные и полевые транзисторы

Итак, мы подошли к биополярным и полевым транзисторам. Мы изучим только биополярные транзисторы, а  полевые пока не будем трогать - отложим для следующего занятия. Биополярные транзисторы ещё иногда называют простыми. В общем мы уже изучили полупроводники и их свойства, а также диод и p-n переход. Теперь подошли к более сложной структуре. Структуре? Думаете что же это, мы уже изучили структуру диода. Напомним, что структура – это несколько полупроводников обладающим либо дырочной проводимостью, либо электронной проводимостью, вот эта структура знакома как p-n переход. У простого (биполярного) транзистора есть две структуры. Это p-n-p структура и  n-p-n структура. А вы же не изучили выводы. Ну конечно, в простом транзисторе как и в полевом три вывода. Только у обычного транзистора другие название выводов и другой принцип работы. Ладно, давайте рассмотрим p-n-p структуру. Первый вывод это база, обладающая управляющим током, второй вывод - эмиттер, взаимодействует с базой, и третий вывод - коллектор, с него снимается повышенный ток. Теперь определим где какой вывод и к какой области он относиться. Первый вывод база, она принадлежит к электронной области, то есть "n", дальше эмиттер - принадлежит к положительному выводу который слева от базы, и коллектор принадлежит к положительному выводу, который справа от базы.

Итак, разберёмся с принципом работы транзистора. Если ток направить на эмиттер и на базу, то получиться p-n переход, там произойдёт избыток электронов, в результате коллектор соберёт этот сильный поток электронов и ток будет усиленный. Я забыл сказать - транзистор как и диод может находиться в двух состояниях: закрытом и открытом. Всё, мы разобрались с транзисторами и диодами, рисунок двух структур p-n-p и n-p-n показан ниже.

Две структуры транзистора: p-n-p и n-p-n

Рисунок 4. Две структуры транзистора: p-n-p и n-p-n. 

На этом статья закончена, если что-то не понятно - обращайтесь, расскажу и отвечу. Всем пока. С вами был Дмитрий Цывцын.

   Форум по теории электроники

   Обсудить статью ПОЛУПРОВОДНИКОВЫЕ ТРАНЗИСТОРЫ И ДИОДЫ


Схемы наши, лайки ваши - всё по честному :)


СХЕМА СИГНАЛИЗАТОРА ПОКЛЁВКИ

СИГНАЛИЗАТОР ПОКЛЁВКИ     Схема и фотографии простого сигнализатора поклёвки для рыбалки.

НЕОБЫЧНЫЙ ФОНАРЬ

НЕОБЫЧНЫЙ ФОНАРЬ     На этот раз мы будем делать светодиодный фонарь из ...паяльника!

САМОДЕЛЬНАЯ ПАЯЛЬНАЯ СТАНЦИЯ

     Схема и фото самодельной паяльной станции на микроконтроллере ATmega8.

ИМПУЛЬСНЫЙ МЕТАЛЛОИСКАТЕЛЬ КАСПЕР

ИМПУЛЬСНЫЙ МЕТАЛЛОИСКАТЕЛЬ КАСПЕР     Описание и схема нового проверенного импульсного металлоискателя Каспер.


» ПОИСК СХЕМ


» РАДИОЭЛЕМЕНТЫ


Группа вконтакте Канал ютуб Группа в фэйсбук Мобильная версия © 2010-2016, "Радиосхемы". Все права защищены. Почта