Блок питания с литиевым аккумулятором для портативных устройств - РАДИОСХЕМЫ

     простые интересные РАДИОСХЕМЫ сделанные своими руками


» ПОИСК СХЕМ


.
» РАДИОБЛОГИ
ТМ Электроникс: акционная доставка за 99 рублей
Защита усилителей мощности на микросхемах TDA
Блок питания с литиевым аккумулятором для портативных устройств
Аварийный выключатель для радиоуправляемых моделей
Как сэкономить при покупке радиодеталей?
Схема подключения GSM-модуля Neoway M660
Сервотестер на микроконтроллере AtTiny13
Управление по UART со смартфона

Блок питания с литиевым аккумулятором для портативных устройств

Питание портативных электронных устройств от батареек - обычное явление. В таких устройствах уже давно применяются литий-ионные или литий-полимерные перезаряжаемые элементы. Они обязаны своей популярностью очень высокой плотности накопленной энергии (~ 300 Втч / л) и небольшому весу, что является результатом очень благоприятного соотношения веса и энергоэффективности (200 Втч / кг в зависимости от формы). Благодаря этим параметрам получаем небольшой объем, и как следствие легкий и простой в использовании источник питания с высоким КПД. Литий-полимерные батареи также не обладают эффектом памяти, который так усложнял жизнь при использовании никель-кадмиевых или никель-металлгидридных аккумуляторов.

Недостатком этих элементов является довольно сложный процесс зарядки, за которым необходимо тщательно следить, чтобы сохранить долговечность и параметры элемента в течение более длительного периода времени. Зарядка многоэлементных батарей также затруднена, для чего необходимо сбалансировать процесс зарядки отдельных составляющих ячеек.

По этим причинам решения с использованием только одного литий-полимерного элемента очень популярны (например в мобильных телефонах). Некоторые производители полупроводников, включая ADI, ST, TI, MAXIM, LT, производят специальные интегральные схемы для зарядки литий-полимерных аккумуляторов для таких решений.

Но использовать литий-полимерные батареи просто так не получится. Требуется интеграция в схему питания всех элементов зарядки и проверки состояния батареи, а также преобразования постоянного напряжения до нужного уровня.

Выбранные элементы были под номинальное напряжение 3,7 В, полностью заряженное напряжение 4,2 В, емкость 2200 мАч и максимальный ток нагрузки 2 С.

Расчетные были следующими:

  1. Схема должна безопасно поддерживать полный цикл зарядки одного литий-полимерного элемента в последовательности CC / CV.
  2. Источником питания в процессе зарядки будет порт USB (5 В / 500 мА) или блок питания мобильного телефона (5,7 В / 800 мА).
  3. Встроенное зарядное устройство должно гарантировать что источник питания подключен и идет процесс зарядки. Он также должен позволять безопасно оставлять схему подключенной в течение любого времени после окончания зарядки.
  4. Система зарядки должна по желанию позволять выбирать такие параметры, как максимальный ток зарядки и максимальное время; предварительно выбранные параметры: 500 мА и 4 ч.
  5. Аккумулятор должен быть защищен от чрезмерного тока разряда (> 2 A).
  6. Влияние зарядного устройства на саморазряд элемента должно быть незначительным.
  7. Схема должна позволять отключать нагрузку с помощью логического (цифрового) сигнала.
  8. Преобразователь (регулятор) напряжения должен обеспечивать выходное напряжение 5,0 В ± 5% при максимальном токе нагрузки 1000 мА.
  9. Должна быть предусмотрена возможность измерения напряжения батареи и выходного напряжения с помощью внешней системы контроля.

Схема принципиальная БП на ADP2291

После анализа потребностей и доступности элементов для проекта, выбор пал на интегральные микросхемы от Analog Devices Inc: ADP2291 зарядное устройство и ADP1610 импульсный преобразователь. Они относительно дешевы и доступны в продаже. Схема разработанного решения представлена на рисунке ниже.

Выходной каскад включает в себя удвоитель, который позволяет получить дополнительное напряжение 9 В / 50 мА. Решение было протестировано и результаты подтвердили, что все проектные предположения выполнены.

Печатная плата разработанная для использования двухстороннего монтажа SMD, имеет размеры 52x28 мм.

Благодаря работе на частоте 700 кГц, система отличается компактной конструкцией - индуктивные элементы и фильтрующие конденсаторы имеют небольшие размеры, несмотря на большой допустимый выходной ток. Достигнутый КПД был выше 80% (в зависимости от величины тока нагрузки).

Разъединитель преобразователя напряжения на основе MOSFET-транзисторов настолько эффективно отделяет выходную цепь от аккумулятора, что даже после года хранения устройства от зарядки аккумулятора его напряжение упало всего примерно на 0,4 В (3,8 В), и схема сразу была готова к работе после включения.

Была успешно использована схема этого зарядного устройства с блоком питания 5 В / 1 А в нескольких различных проектах. А в одном из проектов возникла необходимость в питании цифровых схем на 3,3 В от аккумуляторов.

Самым простым и очевидным решением в такой ситуации было бы использование дополнительного стабилизатора, который снизил бы напряжение с 5 В до 3,3 В. Проблема в том, что такое решение снижает эффективность источника питания почти на 35%, что в случае питания от батареи является очевидным расточительством ёмкости.

Можно предположить, что изменяя значения элементов в цепи обратной связи управления напряжением, получим желаемое выходное напряжение 3,3 В. Но тут есть недостаток: преобразователь ADP1610 обычно работает в конфигурации «повышающий преобразователь», поэтому его выходное напряжение должно быть равно или превышать напряжение питания. Заряженная литий-полимерная батарея имеет напряжение 4,2–3,7 В и требует понижающего преобразователя для формирования 3,3 В.

Решением проблемы было использование конфигурации SEPIC (несимметричный первичный преобразователь индуктивности). Схема представлена на рисунке ниже.

Источник питания 3,3 В с литий-полимерным аккумулятором

В преобразователе этого типа вход и выход разделены для постоянного тока конденсатором C9. На этом этапе нужно использовать керамический конденсатор с очень низким значением ESR (паразитная индуктивность и последовательное сопротивление). Конденсатор должен иметь емкость 10 мкФ и быть неполярным - танталовые и электролитические алюминиевые конденсаторы не подходят для использования в этом месте. Этот блок питания представляется в двух конфигурациях.

Блок питания 5 В с литий-полимерным аккумулятором

Первый - это немного упрощенная версия с батареей 3,7 В / 1000 мАч. Ток зарядки в схеме был ограничен до 250 мА, схема включалась и выключалась с помощью микровыключателей (ВКЛ и ВЫКЛ) и сигнализации состояния переключения (светодиод «Power»). Схема также позволяет измерять напряжение аккумулятора.

Второе решение также обеспечивает возможность контроля напряжения батареи микроконтроллером семейства Atmel 89Cx051 и логического отключения схемы.

Схема питания с литий-полимерным аккумулятором

Подбор элементов в измерительных делителях обеспечивает возможность определения полного разряда аккумулятора путем сравнения напряжений на входах аналогового компаратора (AIN0 и AIN1) и отключения питания установкой низкого состояния на выходе P3.7.

Преобразователь формирует стабильное постоянное напряжение 5,0 В при потреблении тока в диапазоне 30-600 мА. В таком виде и использовалась схема: зарядное устройство - блок питания - нагрузка, надёжно отработав уже несколько лет.



Maestro - 15.01.2021 - Прочитали: 2203



Ваши комментарии к материалу
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]


» РАДИОЭЛЕМЕНТЫ

Группа вконтакте Канал ютуб Группа в фэйсбук © 2010-2021 "Радиосхемы" Все права защищены Почта Моб.версия