ИМПУЛЬСНЫЕ БЛОКИ ПИТАНИЯ SMPS

     интересные РАДИОСХЕМЫ самодельные


» ПОИСК СХЕМ



» РАДИОБЛОГИ
Усилитель для петличного конденсаторного микрофона
Модуль повышающего преобразователя на UC3843A
USB-C: вывод питающего напряжения и распайка разъёма
Простой регулятор цветов светодиода RGB
Схема стабилизатора напряжения с 6,3 В на 5 В USB
Регулируемый источник питания до 24 Вольт
Как определить по виду модель светодиода Cree
Стабилизаторы тока с малым падением напряжения

ИМПУЛЬСНЫЕ БЛОКИ ПИТАНИЯ SMPS


В последние годы происходит повсеместная замена обычных трансформаторных источников питания современными импульсными блоками питания (далее именуемые SMPS - Switching Mode Power Supply).

При проектировании импульсных трансформаторов использовались следующие требования:

  • высокая производительность
  • небольшие размеры
  • минимальное рабочее напряжение
  • низкая частота сбоев
  • низкий ток холостого хода

Теория импульсных блоков питания

В обычных источниках питания изменение напряжения и гальваническая развязка выполнялись на трансформаторе со стальным сердечником, работающим на частоте 50 Гц, полупроводниковым выпрямителем и линейным стабилизатором напряжения.

Однако КПД этой схемы очень низкий (не превышает 50%), большая часть мощности преобразуется в тепло в трансформаторе, диоде и аналоговом стабилизаторе. Большая номинальная выходная мощность требует наличия сетевого трансформатора повышенного размера и большой потери тепла. Этого неудобства можно избежать, увеличив рабочую частоту до нескольких сотен кГц и заменив регулятор напряжения электронным ключом с интеллектуальным управлением. Их задача - преобразовать сетевое напряжение в постоянное, а затем в выпрямленное напряжение, выполняемое быстрым переключением транзисторов. В результате получается высокочастотное прямоугольное напряжение, которое преобразуется импульсным трансформатором и выпрямителем.

Стабилизация выходной мощности достигается изменением ширины импульса при постоянной частоте или включением переключения в определенные периоды времени в зависимости от нагрузки схемы. Наиболее важные преимущества SMPS, сравнимые с обычными блоками питания:

  • малый вес, уменьшенный объем, повышенная эффективность
  • малая емкость фильтрующих конденсаторов для высоких частот переключения
  • отсутствие слышимых помех из-за того, что частота переключения находится за пределами слышимого диапазона
  • простое управление различными выходными напряжениями
  • легко снижать высокое сетевое напряжение

С развитием мощных транзисторов с быстрой коммутацией для высоких частот, стало возможным использовать ИИП, работающие на частотах до 1 МГц. С помощью этого типа резонансных трансформаторов рабочие частоты могут быть увеличены даже до 3 МГц. Тем не менее, эти преимущества уменьшаются из-за нежелательного высокочастотного излучения, а также из-за более низкой скорости реакции на возможные изменения нагрузки.

Правда доступность новых магнитных материалов для трансформаторов, работающих в диапазоне частот примерно до 1 МГц, а также достижения в области источников питания стимулировали разработку новых высокочастотных сердечников трансформаторов.

Эта тенденция привела к разработке новых ферритов Mn-Zn с очень мелкой структурой зерен и материалов с уменьшенными гистерезисными потерями, что позволяет передавать мощность в диапазоне от 1 до 3 МГц. Высокие рабочие частоты приводят к дальнейшему уменьшению размеров ядер и, следовательно, всего блока питания. Новый принцип конструкции в планарной технологии позволяет изготавливать высокочастотные трансформаторы с кардинально уменьшенными размерами (плоские трансформаторы, низкопрофильные трансформаторы). Эта технология оказывает сильное влияние на разработку преобразователей постоянного и переменного тока, а также на производство гибридных импульсных источников питания.

Но вернёмся к теории. Импульсный источник питания работает контролируя среднее напряжение, подаваемое на нагрузку. Это делается путем размыкания и замыкания переключателя (обычно мощного полевого транзистора) на высокой частоте. Система более известна как широтно-импульсная модуляция - ШИМ. Схема ШИМ - самая важная, которая отличает этот тип блока питания, поэтому стоит вспомнить хотя бы само название.

На приведенной диаграмме показаны идеи, лежащие в основе работы ШИМ, и ее довольно просто понять: V = напряжение, T = период, t (вкл.) = длительность импульса. Среднее напряжение приложенное к нагрузке, можно объяснить следующей формулой:

Vo (av) = (t (on) / T) x Vi

Импульсы следуют друг за другом быстро (это порядка многих кГц, то есть тысячи раз в секунду), и для того, чтобы нагрузка не видела внезапных импульсов, необходимы конденсаторы, обеспечивающие относительно постоянный уровень напряжения. Уменьшение времени t (on) вызывает уменьшение среднего значения выходного напряжения Vo (av) и наоборот - увеличение длительности высокого вольтажного состояния t (on) увеличивает выходное напряжение Vo (av).

Предположим, что импульсный блок питания подает напряжение +12 В на нагрузку 6 А. Теперь, когда ток нагрузки внезапно повышается до 8 А, напряжение автоматически снижается до + 10,6 В. За доли секунды обратная связь, отправленная в схему ШИМ, заметит падение напряжения и включит полевой МОП-транзистор на более длительный период времени t (on). Благодаря этому схема может передавать больше мощности и восстанавливать выходное значение напряжения до +12 В.

Частота, с которой работает ШИМ, обычно находится в диапазоне от 30 кГц до 150 кГц, но может быть намного выше.

Схемотехника источников питания SMPS

Вот мы и дошли до практики. В зависимости от требуемой выходной мощности используются разные типы источников питания. Рассмотрим типы трансформаторных схем

Обратноходовый преобразователь

На приведенной схеме показаны основные формы сигналов тока и напряжения для обратноходового трансформатора.

Базовая схема flyback с трансформатором

В первой фазе цикла переключатель подключает дроссель L непосредственно к входному напряжению. Из-за постоянного входного напряжения Ue через дроссель протекает линейно возрастающий ток.

В этой фазе диод D заблокирован. Когда кнопка S открывается, полярность на дросселе меняется на обратную, так что диод проводит и энергия, накопленная в дросселе, передается нагрузочному конденсатору CLi R1. Дроссель действует как источник энергии. Таким образом, регулируя время зарядки на заданной частоте, можно менять энергию запасенную в дросселе.

Чтобы получить гальваническую развязку между входом и выходом схемы, дроссель заменяется трансформатором. Этот элемент действует как промежуточный накопитель энергии, так что цепь нагрузки может использовать энергию запасенную в трансформаторе, и тогда отсутствует прямая нагрузка на источник питания.

Условием сохранения энергии будет наличие в сердечнике трансформатора воздушного зазора или изолирующей прокладки между обеими половинами сердечника (которая имеет тот же эффект, что и воздушный зазор в средней части сердечника), но использование воздушного зазора в средней части сердечника обеспечивает лучшую обратную связь между обмотками.

Преобразователи прямоходового типа

На рисунке показана базовая схема преобразователя прямоходового типа. Когда ключ S замкнут, то линейно возрастающий ток течет через катушку непосредственно к конденсатору Ca и к нагрузке R1. На этом этапе энергия одновременно передается на дроссель и нагрузку. Диод D заблокирован.

Базовая схема прямоходового электропитания

Когда ключ открывается, магнитное поле дросселя прерывается. Полярность дросселя меняется, открывая диод. Энергия от дросселя через диод поступает на конденсатор и на нагрузку. Поскольку передача энергии в выходную схему также происходит при замкнутом ключе, тип этого трансформатора называется прямоходовым. Как и в случае трансформаторов обратного хода, энергия, запасенная в индуктивности в этом типе блока питания, может быть изменена за счет различного времени переключения.

Прямоходовое электропитание с трансформатором

На этой схеме показан источник питания прямого типа с трансформатором для разделения и преобразования сетевого напряжения. При использовании сердечника без воздушного зазора между первичной и вторичной обмотками поддерживается постоянный магнитный контакт. Но сбор и сглаживание выходного тока необходимо реализовать в отдельном дросселе Ls, для каждого выходного напряжения отдельно. Энергия, запасенная трансформатором во время фазы проводимости, передается на L1, Dl, Ce в фазе блокировки. Диод открывается при изменении полярности дросселя накопителя энергии.

Двухтактные преобразователи

Фактически, двухтактные трансформаторы состоят из двух соединенных между собой одиночных трансформаторов.

Базовая схема источника питания двухтактного типа

Переключатели S1 и S2 поочередно подключают первичную обмотку к источнику Ue. По сравнению с трансформатором прямого и обратного хода эта конфигурация обеспечивает возможность полной петли гистерезиса. Благодаря биполярной системе можно получить вдвое большую мощность при том же размере сердечника.

Двухтактный преобразователь

Даже при больших изменениях нагрузки, двухтактный трансформатор генерирует симметричное выходное напряжение, что позволяет напрямую использовать переменное напряжение без предварительного выпрямления, например в галогенном освещении.

Выбор вариантов схем электропитания

Однотранзисторный прямой преобразователь

Преимущества:

  • легкое размагничивание сердечника
  • дешевый в сборке

Недостатки:

  • обратное напряжение на транзисторе Uds> 2Ue
  • необходима размагничивающая обмотка
  • нужна хорошая магнитная связь между первичной и размагничивающей обмоткой

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Двухтактный преобразователь

Преимущества:

  • управляющее напряжение транзисторов имеет одинаковое значение

Недостатки:

  • обратное напряжение на транзисторе Uds> 2Ue
  • проблемы связанные с симметричностью
  • нужна хорошая магнитная связь между первичными обмотками
  • опасность одновременной проводимости транзисторов

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Двухтранзисторный прямой преобразователь

Преимущества:

  • напряжение на транзисторе Uds = Ue
  • легкое размагничивание сердечника
  • трансформатор может иметь большую индуктивность рассеяния

Недостатки:

  • управляющие напряжения должны быть гальванически развязаны

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Односторонний двухтактный преобразователь

Преимущества:

  • напряжение на транзисторе Uds = Ue
  • трансформатор может иметь большую индуктивность рассеяния

Недостатки:

  • проблемы, связанные с симметризацией
  • опасность одновременной проводимости транзисторов
  • управляющие напряжения должны быть гальванически развязаны

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Мостовой двухтактный преобразователь

Преимущества:

  • напряжение на транзисторе Uds = Ue
  • трансформатор может иметь большую индуктивность рассеяния

Недостатки:

  • проблемы, связанные с симметризацией
  • опасность одновременного включения транзисторов на одном плече моста
  • управляющие напряжения должны быть гальванически развязаны

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Обратноходовый преобразователь

Преимущества:

  • можно регулировать несколько выходных напряжений одновременно
  • большой диапазон регулировки при изменении входного напряжения

Недостатки:

  • обратное напряжение на транзисторе Uds> 2Ue
  • сильная нагрузка на конденсатор и диод на выходе
  • необходим сердечник большого поперечного сечения с воздушным зазором
  • проблемы связанные с излучением электромагнитным и вихревые токи

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Инвертирующий (Buck-boost) конвертер

Преимущества:

  • напряжение на транзисторе Uds = Ue
  • простой дроссель
  • нет проблем с магнитной обратной связью
  • небольшая нагрузка на входной конденсатор

Недостатки:

  • нет гальванической развязки между входом и выходом
  • управляющее напряжение должно быть «плавающим»

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Повышающий преобразователь

Преимущества:

  • простой дроссель
  • нет проблем с магнитной обратной связью

Недостатки:

  • обратное напряжение на транзисторе Uds = Ua> Ue
  • нет гальванической развязки между входом и выходом
  • средняя нагрузка на выходной конденсатор

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Понижающе-повышающий преобразователь

Преимущества:

  • простой дроссель
  • нет проблем с магнитной обратной связью

Недостатки:

  • обратное напряжение на транзисторе Uds = Ua + Ue
  • нет гальванической развязки между входом и выходом
  • сильная нагрузка на выходной конденсатор
  • управляющее напряжение должно быть «плавающим»
  • выходное напряжение отрицательно по отношению к входному напряжению

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Обратноходовый конвертор

Преимущества:

  • увеличивает или снижает напряжение при сохранении гальванической развязки входа и выхода 

Недостатки:

  • обратное напряжение на транзисторе Uds> 2Ue
  • сильная нагрузка на конденсатор и диод на выходе
  • необходим сердечник большого поперечного сечения с воздушным зазором
  • проблемы связанные с излучением электромагнитным и вихревые токи

Twt / T - коэффициент заполнения

a. форма волны напряжения на транзисторе
b. выходной ток
c. форма волны тока, протекающего через входной конденсатор
d. форма волны тока, протекающего через выходной конденсатор

Какую надо выбирать схему? Зависит от области применения. В любом случае во всех современных приборах используется импульсный источник питания. И несмотря на более сложную структуру, они значительно лучше своих предшественников с точки зрения эффективности и удельной мощности.

   Форум по БП




   Форум по обсуждению материала ИМПУЛЬСНЫЕ БЛОКИ ПИТАНИЯ SMPS


РОБОТ ЕЗДЯЩИЙ ПО ЛИНИИ

Простая транзисторная схема робота следующего по нарисованной линии. Без микроконтроллеров и дорогих деталей.


LIPO АККУМУЛЯТОР 6F22 9V

Самодельный аккумулятор на 9 В, литий-полимерный, собранный под стандартный корпус типа Крона.


УМОЩНЕНИЕ МИКРОСХЕМ-УНЧ ТРАНЗИСТОРАМИ

Увеличение мощности интегральных усилителей транзисторами. Рассматривается на примере схем LM3886 и TDA7294. 



Радиосхемы » Теория электроники



» РАДИОЭЛЕМЕНТЫ


© 2010-2021 "Радиосхемы". Все права защищены  Почта  PDA   Группа вконтакте   Канал ютуб   Группа в фэйсбук