РАДИОПРИЕМНИКИ: ВИДЫ И ПРИНЦИП РАБОТЫ

     интересные РАДИОСХЕМЫ самодельные


» ПОИСК СХЕМ



» РАДИОБЛОГИ
Усилитель для петличного конденсаторного микрофона
Модуль повышающего преобразователя на UC3843A
USB-C: вывод питающего напряжения и распайка разъёма
Простой регулятор цветов светодиода RGB
Схема стабилизатора напряжения с 6,3 В на 5 В USB
Регулируемый источник питания до 24 Вольт
Как определить по виду модель светодиода Cree
Стабилизаторы тока с малым падением напряжения

РАДИОПРИЕМНИКИ: ВИДЫ И ПРИНЦИП РАБОТЫ


Растущая популярность технологии беспроводной связи, модулей SDR и всех современных радиоинтерфейсов, вызвала желание вспомнить характеристики и свойства базовых конфигураций радиоприемников.

Окончательный выбор схемы конечно зависит от типа, сложности и объема передаваемых данных. Методы проектирования радиоприемников тоже изменились с годами. В основном это произошло за счет увеличения возможностей имеющихся интегральных микросхем, за счет разработки новых технологий их производства.

Также важно снизить затраты, увеличивая при этом функциональность систем обработки сигналов (процессоров DSP). Однако независимо от архитектуры схемы приемников, они должны отвечать определенным неизменным требованиям в отношении частотного диапазона, эффективности и основных параметров: селективности и чувствительности. Начнём краткий обзор.

Приемник AM

Одной из основных, базовых исторически схем является приемник, предназначенный для обработки амплитудно-модулированного сигнала, то есть несущей волны, в которой изменение значения амплитуды отражает передаваемую информацию. Демодуляции такого сигнала можно добиться с помощью простого диодного детектора. Принципиальная схема базового AM-приемника включает в себя: антенну, фильтр, диодный детектор и усилитель, обеспечивающий соответствующий уровень демодулированного (уже звукового) сигнала. Диодный детектор в простейших решениях AM-приемников работает как односторонний выпрямитель, который отслеживает изменения огибающей модулированного сигнала путем зарядки и разрядки конденсатора.

Есть различные модификации амплитудной модуляции, возникшие из-за недостатков базовой версии. Спектр амплитудно-модулированного сигнала, помимо несущей частоты, также включает компоненты, частоты которых являются суммой и разностью частоты несущей волны и частоты информационного сигнала. Это так называемые боковые полосы, они называются так потому, что на самом деле сигнал, которым модулируется несущая волна, может содержать множество компонентов с разными частотами. Для воссоздания исходного сигнала нужна только одна полоса. Получение узкой полосы излучения и высокой энергоэффективности достигается за счет подавления одной боковой полосы и несущей волны - технология SSB.

Приемник с прямым усилением

Следующим шагом в развитии радиотехники стало внедрение приемников прямого усиления, создание которых было связано с распространением усилителей на электронных лампах. Это решение широко использовалось в первых радио. В отличие от более поздних решений, приемники с прямым усилением не использовали преобразование частоты, поэтому задача детектора заключалась в демодуляции непосредственно принятого радиочастотного сигнала. Достоинством этой простой конструкции было, прежде всего, отсутствие влияния так называемого зеркального сигнала.

В приемниках, использующих смешение частот, это серьезная проблема, поскольку случайно принятый зеркальный сигнал ухудшает качество полезного. Каждый дополнительный резонансный контур увеличивает избирательность приемника. Но недостатком этого решения была необходимость одновременной перенастройки всех схем, что было сложной задачей при проектировании.

Другая проблема заключалась в том, что избирательность приемника снижалась с увеличением частоты. Недостатки этого решения способствовали быстрому распространению преобразователей частоты с прямым преобразованием и супергетеродинных приемников.

Прямое преобразование

Способ избежать необходимости использовать множество индивидуально настраиваемых фильтров заключался в передаче радиочастотного сигнала в полосе частот низкой частоты. Приемник с прямым преобразованием, также известный как гомодин, состоит из следующих модулей: входной цепи, смесителя, то есть элемента в котором принимаемый в антенне сигнал передается в низкочастотный диапазон, генератора, фильтра и усилителя.

Характерной особенностью этого решения является двойная роль смесителя, который также действует как детектор. Другой конфигурацией выступают так называемые супергетеродинные приемники, в которых каскад преобразования частоты отделен от блока детекторов. В группе приемников этого типа есть две основных конструкции: супергетеродинный приемник с одинарным и двойным преобразованием частоты.

Супергетеродинный приёмник

В супергетеродинной схеме - модулированный радиочастотный сигнал преобразуется в сигнал более низкой частоты путем смешивания входного радиочастотного сигнала с сигналом другой частоты, вырабатываемой отдельной схемой генератора, так называемого гетеродина. Частотное смешение выполняется в компоненте с нелинейной характеристикой (диод, транзистор). В результате этой операции создается искаженный сигнал, который кроме составляющих с частотой ВЧ, и гетеродинных частот, также содержит компоненты, частоты которых являются их суммой и разностью.

После смесителя вводится фильтр, настроенный на один из этих компонентов, например f h – f w.cz, называемый промежуточной частотой ПЧ. Промежуточная частота фиксированная. Перестраиваемый элемент - гетеродин. Частота местного генератора меняется в зависимости от принимаемого сигнала.

Зеркальный радиосигнал

Недостатком приемников с преобразованием частоты является необходимость подавления так называемого зеркального сигнала. Объяснение неблагоприятного влияния зеркального сигнала можно увидеть на примере. Предполагаем, что модулированный сигнал имеет частоту 100 МГц, а гетеродин генерирует сигнал с частотой 110,7 МГц. В результате смешивания обоих сигналов создается сигнал с частотой f h – f RF = 10,7 МГц. Фильтр ПЧ настроен на эту частоту, но сигнал с частотой 121,4 МГц также достигает антенны. Это зеркальный сигнал, то есть форма волны с частотой, которая отличается от частоты полезного сигнала на величину, равную удвоенной промежуточной частоте.

Если сигнал этот не подавляется входными цепями, то смешивание этого сигнала и сигнала от генератора также даст форму волны 10,7 МГц. Это будет мешать правильному приему полезного сигнала. Решением проблемы помех при приеме зеркальных сигналов является использование супергетеродинного приемника с двойным преобразованием.

Двойное преобразование частоты

Чем выше промежуточная частота, тем больше частотное разделение полезного радиочастотного сигнала и частота зеркального сигнала. Это увеличивает вероятность подавления мешающего сигнала во входной цепи. Следовательно, в супергетеродинном приемнике с двойным преобразованием промежуточная частота на первом этапе преобразования намного выше, чем ПЧ во втором каскаде. Из-за меньшего значения вторая ступень преобразования обеспечивает лучшую селективность.

Работу описанного супергетеродинного приемника следует проследить на таком примере. Предположим, что сигнал с частотой 25 МГц достигает антенны, а промежуточная частота первого каскада преобразования составляет 20 МГц. Отсюда следует, что гетеродин должен генерировать сигнал с частотой 45 МГц. Мешающий сигнал в таком случае будет зеркальной волной, которая может быть легко устранена во входных цепях из-за ее почти в три раза более высокой частоты (65 МГц) по сравнению с частотой полезного сигнала.

Входные цепи и гетеродин

Основным элементом каждого тракта обработки приемника являются входные цепи, а в случае конфигурации преобразователя частоты также гетеродин и смеситель. Основная задача входных цепей - отделить форму волны определенной частоты от сигналов, достигающих антенны, привести ее к следующему этапу обработки с минимально возможными потерями и подавить все мешающие сигналы, достигающие антенны. Поэтому важнейшим параметром входных цепей является избирательность. Также важны диапазон настройки и частотная характеристика.

В последние годы были разработаны многие другие методы, включая прямой цифровой синтез (DDS), которые используются для генерации сигналов на желаемой частоте. Гетеродин должен обеспечивать генерацию сигналов в определенной полосе и настройку с соответствующим шагом частот. Кроме того, он должен характеризоваться достаточно низким уровнем фазового шума в заданной полосе, совпадающим с шириной канала. Выходной сигнал генератора также должен иметь соответствующий уровень, необходимый для управления смесителем.

Часто бывает необходимо использовать дополнительный усилитель. Его задача - обеспечить приемлемый уровень сигнала для потерь преобразования в смесителе. В случае портативных устройств дополнительным важным параметром гетеродина является питание и потребляемая мощность.

Смесители и усилители

Смесители построены в основном на основе нелинейных полупроводниковых элементов (диодов, транзисторов). Из-за простоты конструкции, среди беспроводных устройств преобладают решения с диодными смесителями. Самыми популярными конфигурациями схем этого типа являются односторонние и одно- или двухбалансные смесители.

Возможны различные дополнительные модификации схем, например смесители с подавлением, которые используются в основном в диапазоне высоких частот (ГГц). Простейший диодный смеситель - одиночный, относящийся к группе суммирующих усилителей. Эта схема состоит из трансформаторов, которые соединяют входные сигналы (ВЧ и гетеродин) со смесителем, одним диодом и выходным фильтром, настроенным на желаемую частоту.

Второй тип смесителей - это смесители в которых входной сигнал и сигнал от гетеродина подаются на два независимых входа. Примером системы такого типа является сбалансированный. Он используется для устранения нежелательных гетеродинных частот, проникающих в выходной усилитель промежуточной частоты.

Схема состоит из двух диодов, соединенных таким образом, чтобы на выходе смесителя не появлялось напряжение частоты гетеродина. Модификация этой схемы, двухбалансный смеситель, содержит четыре диода, а также позволяет исключить влияние составляющих принимаемого сигнала. Потери преобразования в смесителях обоих типов сопоставимы. 

Существуют также активные смесители, которые обычно изготавливаются в виде интегральных микросхем и позволяют снизить потери преобразования и даже усилить обработанный сигнал. Благодаря этому они могут взаимодействовать с генераторами с более низким уровнем выходного сигнала.

Усилители приемника должны быть малошумящими и устойчивыми к искажениям. Также важно, чтобы входной малошумящий усилитель мог обеспечить адекватное усиление сигнала. Соответствующий параметр SNR (сигнал/шум) на входе следующего каскада приемника должен достичь уровня, позволяющего в дальнейшем корректную обработку сигнала.

Наиболее важными параметрами усилителей являются полоса пропускания, коэффициент шума, усиление, напряжение питания, потребляемая мощность и линейность. В идеале усилитель должен обеспечивать достаточное усиление для воспроизведения слабых сигналов, но не вносить чрезмерных искажений в сигналы с большой амплитудой.

Цифровые радиоприёмники

В настоящее время большинство аналоговых элементов тракта промежуточной частоты могут быть реализованы в цифровой технологии, это решение называется SDR - Software Defined Radio. Это связано с тем, что все больше и больше операций, таких как фильтрация сигналов и преобразование частоты, которые до сих пор были областью аналоговой электроники, выполняются с использованием цифровых фильтров и процессоров. Также бывает что сигналы промежуточной частоты преобразуются в цифровую форму в схемах аналого-цифрового преобразователя и только затем демодулируются в процессоре DSP.

В этом случае выбор аналого-цифрового преобразователя в основном определяется типом архитектуры приемника. На это влияют селективность фильтров, динамический диапазон усилителей, а также ширина полосы и тип используемой модуляции.

Уровень сигнала, подаваемого на аналого-цифровой преобразователь, требует использования соответствующего разрешения. Например, в случае приемника с двойным преобразованием, предназначенного для приложения стандарта IEEE 802.16 для обработки радиочастотных сигналов используются 12-битные преобразователи. В случае использования одиночного преобразования, когда промежуточная частота выше, используются преобразователи с более высоким 14-битным разрешением. Это связано с меньшей избирательностью приемников этого типа.

Из-за преобладания цифровых схем решение о том, какие функции приемника должны быть аналоговыми, а какие - цифровыми, зависит от таких факторов как производительность, стоимость, размер и потребляемая мощность. Практически в каждом устройстве, работа которого основана на беспроводной передаче, есть интегральные микросхемы, состоящие из модулей, выполняющих большинство функций обработки аналоговых сигналов, включая фильтрацию, демодуляцию и усиление.

В принципе сейчас идёт повсеместная тенденция к миниатюризации, что и влияет на конструкцию приемников. Интеграция все большего числа функций в единую микросхему влияет на свойства готового устройства, которые важны с точки зрения пользователя (низкая стоимость, низкое энергопотребление, небольшие размеры). Но независимо от уровня интеграции, основные элементы архитектуры приемника и основные этапы обработки принятого сигнала остаются неизменными.

   Форум по приёмной аппаратуре




   Форум по обсуждению материала РАДИОПРИЕМНИКИ: ВИДЫ И ПРИНЦИП РАБОТЫ


УСИЛИТЕЛЬ ИЗ ЭЛЕКТРОФОНА

Подключение и испытание усилительного модуля на транзисторах КТ835 от электрофона "Россия 321 Стерео".


LIPO АККУМУЛЯТОР 6F22 9V

Самодельный аккумулятор на 9 В, литий-полимерный, собранный под стандартный корпус типа Крона.


ИМПУЛЬСНЫЕ БЛОКИ ПИТАНИЯ SMPS

Теория работы импульсных источников питания и варианты схемотехники.



Радиосхемы » Теория электроники



» РАДИОЭЛЕМЕНТЫ


© 2010-2021 "Радиосхемы". Все права защищены  Почта  PDA   Группа вконтакте   Канал ютуб   Группа в фэйсбук