Внутреннее сопротивление и ЭДС

Электродвижущая сила и внутреннее сопротивление ведут нескончаемую битву внутри наших источников напряжения. Что стоит за этими концепциями? Каковы их отношения и каковы последствия их существования?

Электродвижущая сила

Электродвижущая сила звучит как термин из учебника по физике, и мало кто даже из радиолюбителей точно знает, для чего она нужна и что это значит. В Википедии описание выглядит так:

Электродвижущая сила (ЭДС) – фактор, вызывающий протекание тока в электрической цепи, равный электрической энергии, полученной единичным зарядом, перемещаемым в устройстве (источнике) электрического тока в направлении, противоположном силе электрического поля, действующего на это обвинение.

Понять это с первого раза может далеко не каждый. Единственное, что стоит помнить из этого описания, – это тот факт, что электродвижущую силу часто сокращают как ЭДС – это просто короче и проще. В английском языке аббревиатура EMF, которая означает Electromotive Force.

Начнем с того, что электродвижущую силу очень часто путают с напряжением, наверное потому, что оба эти значения выражаются в вольтах. Но если посмотрим на определение напряжения, то можно увидеть что оно полностью отличается от описания ЭДС и намного короче:

Электрическое напряжение – разница электрических потенциалов между двумя точками электрической цепи или электрического поля.

Так является ли ЭДС чем-то совершенно другим, чем напряжение? Не совсем. Фактически, ЭДС и напряжение – это одно и то же физическое понятие. Они оба вызывают протекание тока и оба говорят об энергии, которую несет электрический заряд. Что же делает их особенными?

Говоря проще – ЭДС это то что хотим, а напряжение – это то что получаем. Рассмотрим тему на примере водяной установки. В этом случае можно назвать электродвижущую силу номинальным давлением насоса, который достаем из коробки. Номинальный означает то, что насос теоретически способен производить. Другими словами, ЭДС описывает сколько «толкающей силы» источник может дать. Но действительно ли получим эту силу на практике?

Теперь переходим к напряжению, эквивалентом которого в водяной системе является фактическое давление воды, которое получаем после подключения нашего насоса. Конечно любые засоры в трубах или повреждение установки снижают это давление, так же как резистор вызывает падение напряжения в цепи. Но на интересует может ли насос протолкнуть воду с мощностью, обещанной производителем, и обычно это не так. Точно так же, если у нас есть аккумулятор с ЭДС 9 В, то после его подключения и измерения напряжения на клеммах может оказаться, что там всего 8,5 В. Почему? У каждого источника напряжения есть свои недостатки, которые нельзя преодолеть физически.

Таким образом, ЭДС – это виртуальная величина. Можем определить это как напряжение, которого достигли бы, если бы аккумулятор не имел дефектов и его эффективность составляла 100%. Электроника даже изобрела концепцию идеального источника напряжения, заключающуюся в том, что в определенных ситуациях человек закрывает глаза на недостатки источника и принимает рабочее напряжение, равное ЭДС (U = ЭДС). Но в действительности идеальных батарей, аккумуляторов и генераторов не существует, поэтому вырабатываемое во время работы напряжение всегда ниже значения ЭДС.

Эта потеря велика или нет? Чтобы проверить можно взять обычную батарею AA. На этикетке указано 1,5 В. Это значение производители называют номинальным напряжением. Так это имеется ввиду ЭДС или рабочее напряжение? Чтобы измерить ЭДС батареи, понадобится вольтметр. Важно чтобы измеряемая батарея была новой – надо видеть полный заряд, которым ее снабдил производитель, а не какое-либо остаточное напряжение в использованной батарее.

Можете измерить несколько батарей от разных производителей, и каждая из них даст разный результат. Один раз 1,60 В, в другой 1,65 В или 1,57 В. Почему же на каждой из этих батарей есть метка 1,5 В, хотя их ЭДС выше? Установите на них небольшой резистор, и результат колеблется между 1,55 В и 1,62 В, что все равно больше, чем предсказывал производитель. Что же тут происходит?

Если посмотрим в книги по электротехнике, те, которые касаются аккумуляторов, то там найдем определение до 10 различных типов напряжения! Вот несколько примеров:

  1. Теоретическое напряжение (theoretical voltage) – величина энергии, возникающая от батарей в зависимости от материалов. Например использование цинка и меди в качестве электродов даст напряжение 1,1 В, в то время как самые современные литиевые батареи могут достигать даже 3,5 В.
  2. Напряжение холостого хода (open-circuit voltage) – можем описать их как «напряжение батареи из коробки» или просто ЭДС. Это значение часто немного ниже теоретического напряжения, потому что конструкция батареи влечет за собой определенные ограничения.
  3. Рабочее напряжение (closed-circuit voltage) – батареи под нагрузкой теряют часть ЭДС. Насколько велико падение зависит от нескольких вещей, о которых расскажем далее.
  4. Номинальное напряжение – (nominal voltage) – ЭДС каждой батареи (угольной, щелочной или литиевой) может быть разным – иногда это 1,55 В, в другой раз, например, 1,62 В. Почему же тогда на каждой из них написано 1,5 В? Причина – стандартизация. Чтобы избежать путаницы и не заставлять потребителя задаваться вопросом, какое именно напряжение будет наилучшим в данном случае, было введено несколько стандартных напряжений, таких как 1,5 В, 3 В и 9 В, которым назначены ячейки. Во всех случаях ЭДС немного выше номинального напряжения, так что это «обман» в нашу пользу.
  5. Напряжение отключения (cut-off voltage) – при разрядке источник теряет энергию и, таким образом, снижает значение его ЭДС и рабочего напряжения. Через некоторое время наступит момент, когда напряжение станет слишком низким для продолжения питания устройства и он будет считаться разряженным. Но эта граница довольно плавная и зависит от нагрузки. Разряженный аккумулятор может не питать фонарик, но если поместим его в электронные часы, он сможет запитывать его еще несколько дней.

Откуда же это несоответствие? Ответ на вопрос требует изучения внутреннего сопротивления.

Внутреннее сопротивление

Сопротивление – это явление, которое можно рассматривать как положительное и отрицательное (плохое). Оно препятствует прохождению тока, забирает энергию у электронов и вызывает падение напряжения. Когда эти явления хороши? Когда хотим преобразовать электричество в тепло или свет. Без него не работали бы такие устройства, как бойлер, тостер, сушилка или лампочка.

Отрицательной стороной сопротивления будет то, что все кабели, которые подают энергию в дом и питают устройства, также обременены им. Следовательно, они также потребляют, точнее тратят впустую некоторую энергию. К счастью, сопротивление медных проводов очень низкое, и почти не почувствуются эти потери в домашних условиях.

Но есть еще один момент отрицательного сопротивления. Оно называется внутренним сопротивлением и возникает там, где меньше всего этого ожидаем – внутри источников напряжения.

Внутреннее сопротивление можно назвать узким местом источников напряжения. Это причина того, что рабочее напряжение ниже электродвижущей силы. Другими словами, оно тратит энергию еще до того, как оставит батареи или генераторы на электростанции. В нормальных условиях невозможно избежать внутреннего сопротивления. Это естественный недостаток всех источников электроэнергии – батарей, аккумуляторов, солнечных панелей, ветряных турбин или любых трехфазных генераторов, которые снабжают энергией наши дома. Откуда же оно взялось?

Внутреннее сопротивление генераторов

Начнем с генераторов переменного напряжения, потому что в их случае дело обстоит проще. Генераторы переменного тока – это просто большие электродвигатели. Они используют принцип электромагнитной индукции, то есть магнит, движущийся рядом с проводом, генерирует в нем ток.

Проще говоря, если возьмете неодимовый магнит и начнете его раскачивать возле какого-то провода, то создадите в нем электричество. Правда этого тока недостаточно для питания даже самого маленького светодиода. Во-первых, для генерации сильного тока требуется магнит гораздо большего размера, а во-вторых, гораздо больше проводов. Вращающийся магнит генерирует ток в десятках метров витой проволоки, которая его окружает. Так можно вкратце описать основы работы генераторов, типов конечно много, но здесь не будем останавливаться на них. Важно то, что это огромное количество спиральной проволоки (иногда заменяемой стержнями или листами) является важным элементом любого генератора, обеспечивая нужное количество движущихся электронов, реагирующих на вращение магнита. Примерно так работает любой генератор переменного тока.

У каждого, даже самого лучшего проводника, есть сопротивление. Обмотки, без которых было бы невозможно производить электричество, в то же время являются слабым звеном каждого генератора. С одной стороны они позволяют току течь, с другой – нагреваются через существующее сопротивление, посылая часть энергии в воздух в виде тепла.

Как с этим справляется электроэнергетика? Во-первых, турбогенераторы вырабатывают очень высокое напряжение. Благодаря этому можно добиться такой же мощности при довольно низкой силе тока, и чем меньше ток – тем меньше потери из-за сопротивления. Также надо помнить, что электричество должно пройти сотни километров, прежде чем достигнет домов, поэтому стоит поддерживать высокое напряжение как можно дольше. На практике оно снижается до 220 В только на трансформаторных подстанциях, разбросанных в городах. Трансформатор – это тоже устройство, сделанное из большого количества проволоки, и на нем тоже происходит падение напряжения. Его величина зависит от нагрузки, поэтому чем больше подключено к сети оборудование, тем ниже измеряемое напряжение в розетке.

Внутреннее сопротивление батареи

Батарея или аккумулятор – это устройства, внутри которых нет проводов, но это не значит, что на них не распространяется внутреннее сопротивление. Ячейки по существу состоят из двух электродных материалов (положительного и отрицательного), которые погружены в электролит. Один из электродов, например, из цинка, отдает электроны, другой, например, из меди – принимает электроны. Соединение обоих электродов проводом позволяет возникнуть потоку электронов между ними. Поддержание обмена возможно благодаря электролиту, специальному раствору, обеспечивающему необходимые элементы химической реакции. Примерно так работают аккумуляторы.

Рассмотрим где в аккумуляторе скрывается внутреннее сопротивление. Ответ непрост, потому что в ячейке происходит множество процессов, каждый из которых добавляет свой вклад к сопротивлению. Основные из них:

  1. Дефекты электродов – каждый материал имеет дефекты в виде поврежденной структуры или примесей. Это, в свою очередь, влияет на способность электродов отдавать и принимать электроны.
  2. Ограниченная проводимость электролита – электролит заполнен ионами (положительно и отрицательно заряженными атомами), которые перемещаются между электродами, чтобы обеспечить баланс заряда и предотвратить его накопление (поляризацию). К сожалению, ионы являются частицами намного тяжелее и медленнее электронов, поэтому их поток характеризуется определенным естественным сопротивлением.
  3. Коррозия электродов – продукты химических реакций, происходящих между электролитом и электродами, должны куда-то уходить. Иногда они создают газ, который выходит из батарей с помощью специальных микроскопических клапанов, иногда это твердое вещество, которое невозможно удалить наружу. К сожалению, в случае некоторых типов аккумуляторов эти отходы могут оседать на электродах, создавая на них своего рода покрытие, которое значительно мешает правильной работе аккумулятора.
  4. Износ электродов – обмен электронами связан с изменением структуры электродов. Отрицательный электрод (например, цинк), отдавая электроны, буквально растворяется в электролите. Его уменьшающаяся поверхность означает, что он не может выпускать электроны с той же скоростью, что значительно снижает рабочие параметры батареи, особенно в более старом типе.

Приведенные выше примеры показывают, что сопротивление батареи намного более проблематично, чем сопротивление генератора, по крайней мере, по нескольким причинам:

  • Чтобы производить батареи с низким внутренним сопротивлением, многие факторы должны быть идеально согласованы друг с другом, что непросто.
  • Батареи работают на основе химических реакций, и они, естественно, чувствительны к температуре – слишком низкая или слишком высокая температура немедленно истощит элемент.
  • Внутреннее сопротивление батареи переменное. Из-за разрушения электролита и электродов сопротивление батареи увеличивается по мере ее разряда. Только новейшие литий-ионные конструкции способны минимизировать эту проблему.

Как насчет того, чтобы попытаться устранить проблему внутреннего сопротивления, увеличивая напряжение ячеек? Здесь мы сталкиваемся с рядом ограничений. Во-первых, не выйдет получать более 3,5 В от химических реакций (по крайней мере в настоящее время). Вот почему батареи с напряжением 9 В строятся путем соединения обычно 6 ячеек по 1,5 В каждая. А аккумуляторы питающие электромобили Тесла, вырабатывают напряжение 400 В, весят более 500 кг и состоят из 8256 небольших литий-ионных элементов. Аккумуляторы Tesla занимают всю поверхность пола автомобиля.

Как рассчитать внутреннее сопротивление

Раз уж внутреннее сопротивление невозможно победить, стоит хотя бы выяснить, как его можно измерить и каких значений оно может достичь. Чтобы узнать это нужно будет сделать 3 измерения.

Каждый мультиметр имеет возможность измерять сопротивление. Но нельзя пытаться измерить внутреннее сопротивление любого источника напряжения Омметром. Попытка измерить внутреннее сопротивление трансформатора, вставив щупы измерителя в розетку, – одна из худших идей, которые можно придумать. Никогда не пытайтесь это сделать!

Как тогда правильно измерить внутреннее сопротивление АКБ? Есть два метода, и вот более простой. Сначала измерьте ЭДС аккумулятора. Установите мультиметр на измерение постоянного напряжения и приложите щупы к обоим полюсам батареи.

Затем нужно измерить рабочее напряжение АКБ. Лучше всего взять резистор с известным значением, приложить его концы к обоим полюсам и снова измерить напряжение, как это делали только что.

Как видите, разница между ЭДС и напряжением новой батареи очень мала – всего 0,013 В. Следовательно, чем лучше у вас прибор, тем больше вероятность, что вы сможете измерить его. Но и не забудьте еще измерить сопротивление резистора, который используете. Тот факт, что он 47 Ом, не означает, что у него такое сопротивление. В данном случае это 46,1 Ом.

Имея все измерения (ЭДС, рабочее напряжение, сопротивление резистора), достаточно запомнить Закон Ома, потому что именно по нему сделаем необходимые вычисления:

Теперь выполним 3 простых шага:

  • Шаг 1 – Рассчитайте разницу между ЭДС и рабочим напряжением. Это значение, поглощаемое внутренним сопротивлением, или падение напряжения на внутреннем сопротивлении. В этом случае 1,595 В – 1,583 В = 0,013 В.
  • Шаг 2 – Рассчитайте ток, протекающий в цепи во время работы. Для этого делим рабочее напряжение на сопротивление резистора. Получаем 1,583 В / 46,1 Ом = 0,034 А.
  • Шаг 3 – Вычисляем внутреннее сопротивление батареи, разделив падение напряжения, вызванное протекающим через нее током. Для этого эксперимента это будет 0,013 В / 0,034 А = 0,382 Ом.

Это много или мало? Зависит от того, какие батареи хотим использовать. Для сравнения, внутреннее сопротивление типичных батареек АА в лет 30 назад составляло от 1 Ом до 3 Ом, что в несколько раз больше, чем сегодня. Конечно, в 1980-х щелочные батареи только выходили на рынок, и литиевые приходилось ждать до 1995 года. Это показывает насколько сильно изменилась технология производства аккумуляторов за последние годы. Снижение внутреннего сопротивления аккумулятора позволяет снизить потери энергии, а значит повысить его КПД. Сегодняшние батареи способны питать гораздо больше энергоемких устройств, чем раньше, без сильного нагрева и поддержания постоянного напряжения в течение гораздо более длительного времени. Вот в принципе и вся теория, надеемся с практикой теперь у вас проблемы не возникнут. А если что осталось неясным – добро пожаловать на форум!